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A B S T R A C T   

Despite being the mainstay for the initial noninvasive assessment of patients with symptomatic coronary artery 
disease, the 12‑lead ECG remains a suboptimal diagnostic tool for myocardial ischemia detection with only 
acceptable sensitivity and specificity scores. Although myocardial ischemia affects the configuration of the QRS 
complex and the STT waveform, current guidelines primarily focus on ST segment amplitude, which constitutes a 
missed opportunity and may explain the suboptimal diagnostic performance of the ECG. This possible oppor
tunity and the low cost and ease of use of the ECG provide compelling motivation to enhance the diagnostic 
accuracy of the ECG to ischemia detection. This paper describes numerous computational ECG methods and 
approaches that have been shown to dramatically increase ECG sensitivity to ischemia detection. Briefly, these 
emerging approaches can be conceptually grouped into one of the following four approaches: (1) leveraging 
novel ECG waveform features and signatures indicative of ischemic injury other than the classical ST-T amplitude 
measures; (2) applying body surface potentials mapping (BSPM)-based approaches to enhance the spatial 
coverage of the surface ECG to detecting ischemia; (3) developing an inverse ECG solution to reconstruct 
anatomical models of activation and recovery pathways to detect and localize injury currents; and (4) exploring 
artificial intelligence (AI)-based techniques to harvest ECG waveform signatures of ischemia. We present recent 
advances, shortcomings, and future opportunities for each of these emerging ECG methods. Future research 
should focus on the prospective clinical testing of these approaches to establish clinical utility and to expedite 
potential translation into clinical practice.   

Introduction 

Every year, around 3.9–5.8 million Adults in the U.S. are evaluated at 
an emergency department for a chief complaint of chest pain [1,2]. 
Nearly two thirds (63%, IQR 38%–81%) of these patients are admitted to 
the hospital for further evaluation. Among all of those evaluated for 
chest pain, a small subset of patients (i.e., 5.1%–8.4%) are diagnosed 
with acute myocardial infarction [3,4]. Although the initial evaluation 
includes the standard 10-s 12‑lead ECG [5–7], this test has historically 
lacked adequate sensitivity in detecting acute ischemia. A large meta- 
analysis with pooled sample size of >24,000 patients found the over
all sensitivity and specificity of dynamic ST changes on the 12‑lead ECG 
to be 68% and 77%, respectively [8]. In fact, this sensitivity can vary 

anywhere from 23% to 100% depending on the spectrum of disease 
severity under investigation [9]. Fig. 1 illustrates the spectrum of cor
onary artery disease and potential classification systems. 

Current guidelines primarily rely on ST segment amplitude of the 
standard ECG for defining diagnostic criteria of acute myocardial 
infarction [6]. These criteria are driven by the need to identify patients 
with acute ongoing ischemia that might benefit from reperfusion ther
apy, not necessarily for screening patients for any ACS. Accordingly, 
nearly 43%–60% of patients with ACS present with neither ST deviation 
nor T wave inversion [10,11]. Given that prior studies have indicated 
that significant ST elevation (STE) is precipitated by transmural 
ischemia associated with total coronary occlusion, current practice 
guidelines broadly define ongoing myocardial ischemia into STE-ACS 
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versus NSTE-ACS. However, a scoping review of literature amassing 
over 79,456 patients shows that 40% of patients with diagnostic ST 
elevation have no total coronary occlusion and ~ 25% of patients with 
no diagnostic ST elevation have, in fact, total coronary occlusion 
(Table 1). The outcome in these studies was primarily defined as acute 
coronary lesion with 100% total occlusions requiring revascularization 
during primary percutaneous coronary intervention, excluding patients 
with prior coronary stents or bypass surgeries. Data in this table high
lights the discrepancy between observed ST elevation on the standard 
ECG and focal angiographic findings, questioning the use of STE as the 
sole basis for diagnostic criteria in clinical practice. Determining who 
would benefit from reperfusion therapy, thus, remains an adjudicated 
diagnosis. 

To address the shortcomings of the current classification system, a 
new conceptual paradigm has been recently proposed, namely occlusion 
versus non-occlusion myocardial infarction (OMI vs. non-OMI) [18]. 
The latter paradigm has two distinct advantages. First, it prompts the use 
of numerous ECG features indicative of ischemia to identify patients 
who might benefit from reperfusion therapy, rather than using surrogate 
outcomes defined by the ECG itself like STEMI (i.e., “self-fulfilling 
prophecy” paradox). This definition conceptually shifts the diagnostic 
mindset away from assessing whether ST elevation exists or not (i.e., 
treat the patient not the ECG). Second, this paradigm emphasizes that 
not all patients need to be diagnosed by the ECG. Patients presenting to 
the emergency department with angina-like symptoms need to be tri
aged into one of three categories, each with its own implications: (1) 
those who do not have acute ongoing ischemia and can be rapidly 
identified by rule-out protocols (e.g., troponin, HEART score) [19–21] 
and can be safely discharged home; (2) those with acute ischemia who 
can be risk stratified by ECG findings, troponin, or stress tests and 
require admission for anti-ischemic therapy and potential early coro
nary angiography; and (3) those with acute ischemia and ongoing loss of 
viable myocardium requiring emergent reperfusion. Such a triage sys
tem prompts the use of the ECG in conjunction with other diagnostics, 
which aligns well with current clinical workflow and practice recom
mendations [7]. This paper will broadly focus on the role of the ECG in 
detecting acute myocardial ischemia (i.e., box with dashed red line in 
Fig. 1). Exploring the role of the ECG across this triage continuum has 
implications for both ruling in and ruling out ACS, including the subset 
with severe coronary occlusion (i.e., STEMI or OMI). 

The ECG basis of acute ongoing ischemia 

The detection of ischemia using surface ECG is not a simple task; it 
comes with both conceptual and technical challenges. ACS occurs as a 
results of atherosclerotic plaque rupture that stimulates the formation of 
platelet-fibrin aggregates. Platelet activation may result in a thrombus 
that completely occludes the epicardial coronary artery, a partially 
occlusive thrombus, or small aggregates that shower downstream, 
occluding small arterioles. This process therefore results in a wide 
spectrum of ischemia: transient, persistent, or vacillating; complete or 
partial, and encompassing a spectrum from microscopic to extremely 
large myocardial territory. From these considerations alone, it is easy to 
understand why a single 12‑lead ECG, representing only 10 s of a dy
namic and complicated process, can have such wide variability in 
diagnostic accuracy. 

While ACS is fundamentally a problem of coronary flow, for the 
interpretation of the ECG, it is necessary to focus on the electrophysio
logical consequences. During an ischemic episode, diminished flow due 
to coronary occlusion induces regional metabolic derangements, which 
in turn disproportionately distort the morphology of the action potential 
and the propagation of excitation in various myocardial segments. Given 
that the surface ECG measures potential differences, detectable ECG 
changes arise only if the positive pole of an ECG lead is facing a 
myocardial region with such action potential distortions and the 
resulting tissue-scale currents, often called `injury currents' (Fig. 2A). 
However, these distortions are summative in nature, so injury currents 
flowing in opposite directions might cancel or attenuate changes 
observed in a given ECG lead (Fig. 2B). Thus, a more comprehensive 
approach for myocardial ischemia detection should be based on two 
aspects [22]: (1) evaluating waveform morphology over the entire de
polarization and repolarization phases (temporal characteristics), rather 
than voltage at a given time point like J + 80; and (2) evaluating relative 
inter‑lead distortions in waveform morphology across all myocardial 
segments in the 12 leads (spatial characteristics), rather than absolute 
changes in isolated ECG leads. Using these broad conceptual principles, 
the following section discusses four emerging approaches to enhance the 
ECG detection of ischemia: (1) techniques based on novel temporal- 
spatial measures of global ventricular repolarization dispersion; (2) 

Fig. 1. Classification systems across the spectrum of coronary artery disease. 
This figure shows the spectrum of coronary artery disease (CAD) as a function 
of severity and extent of atherosclerosis plaque progression, ranging from 
patent coronary artery (far left) to total coronary occlusion (far right). Among 
patients who develop symptomatic CAD, including those evaluated for chest 
pain or angina-like symptoms, a subset is diagnosed with acute coronary syn
drome (ACS). This group is subclassified, based on biomarker-evidence of 
myocardial necrosis, as either acute myocardial infarction (MI) or unstable 
angina (UA). Those with acute MI can be further subclassified, based on the 
presence of ST elevation on the ECG, as either ST elevation myocardial 
infarction (STEMI) or without ST elevation (NSTEMI). The STEMI and NSTEMI 
patients overlap in terms of presence or absence of total occlusion (depicted as 
triangles across the continuum in the figure). Alternatively, the same group 
with acute MI can be subclassified, based on angiographic TIMI flow criteria, as 
either occlusion (OMI) or non-occlusion (non-OMI) myocardial infarction. 
Unlike STEMI, OMI classification better aligns with focal angiographic findings 
since this group exclusive contains patients with total coronary occlusion. Color 
gradient indicates the severity of disease. This Figure was created with 
http://BioRender.com. 

Table 1 
Relationship between total coronary occlusion and ST-elevation pattern on the 
12‑lead ECG.  

Author Diagnostic STE on 12‑lead 
ECG 

No diagnostic STE on 
12‑lead ECG 

Total 
occlusion 

No total 
occlusion 

Total 
occlusion 

No total 
occlusion 

Dixon (2008) [12] – – 7199 23,187 
Wang (2016) [13] 10,211 17,514 4856 23,344 
Karwowski (2017) 

[14] 
2949 1630 723 1995 

Figueras (2018) 
[15] – – 110 450 

Meyers (2021) [16] 67 0 41 126 
Tanka (2021) [17] 84 50 14 83 
WEIGHTED TOTAL 

(n = 79,456) 
13,311 
(60%) 

19,194 
(40%) 

12,943 
(23%) 

44,219 
(77%)  
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Fig. 2. Limitations of ST amplitude on surface ECG as a sole marker of myocardial ischemia. 
(A) cardiac model of anterior wall epicardial ischemia with corresponding ST elevation on V3 to V5 of the 12‑lead ECG. (B) cardiac model of anterolateral and inferior-apical epicardial ischemia with corresponding 
attenuation of ST changes on the 12‑lead ECG. This figure was generated using ECGSIM (http://www.ecgsim.org) [23]. 
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techniques that aim to increase the spatial coverage of the ECG using 
body surface potentials mapping (BSPM) principles; (3) techniques 
based on modeling cardiac potentials from surface ECG (ECG imaging); 
and (4) techniques based on artificial intelligence (AI) and machine 
learning. Although these four techniques are not mutually exclusive, 
they can serve as a general guiding framework to conceptually catego
rize the rapidly emerging literature on ECG detection of ischemia. 

Novel ECG signatures of ischemia 

Given that current clinical practice relies on the visual inspection of 
ECG waveforms, a consensus report by renowned experts in the field has 
identified 7 visual patterns indicative of coronary occlusion (or STE-ACS 
equivalent) [24] beyond the criteria recommended by current practice 
standards: ST depression in V1 to V3; prominent positive T waves; 
upsloping ST depression with tall T waves; small inverted T waves in V1 
to V3; deep negative T waves in precordial leads; and widespread ST 
depression with elevation in aVR and V1. Similar ECG patterns have also 
been proposed as indicative of coronary occlusion [18]: ST depression in 
V1 to V4; hyperacute T waves; subtle ST elevation; reciprocal ST 
depression; acute pathologic Q waves; and loss of terminal S wave. 
However, defining these ECG patterns relies heavily on the visual 
assessment of waveform morphology and, thus, introduces a high degree 
of subjectivity and inter-rater variability among ECG interpreters. 

A more objective assessment is possible based on computing indices 
that can quantify the temporal-spatial magnitude of ischemia-induced 
global repolarization dispersion. One such index is T-wave complexity, 
defined as the ratio of the 2nd to 1st eigenvalues of principal component 
analysis (PCA) of the ST-T waveform in the perpendicular ECG leads (I, 
II, V1-V6) [25]. A larger ratio would indicate more dispersed repolari
zation signal likely due to regional variations in signal propagation due 
to ischemia. Al-Zaiti et al. found that T-wave complexity moderately 
correlates with infarct size (r = 0.41) and has sensitivity/specificity for 
detecting NSTE-ACS of 0.57 / 0.76 [26]. Using dynamic changes in T 
wave complexity during exercise-induced myocardial ischemia has been 
shown to boost sensitivity and specificity for detecting focal myocardial 
ischemia on SPECT to 0.80 and 0.83, respectively [27]. These findings 
indicate that this metric is likely sensitive to both mild and more 
advanced stages of ischemia and infarction. A similar metric is the V- 
index which quantifies the repolarization times of myocytes across 
myocardial segments. Abacherli et al. have shown that a larger v-index 
has sensitivity/specificity for detecting acute myocardial infarction of 
0.78 / 0.50 [28]. Another intuitive index is the spatial QRS-T angle, 
which quantifies the deviation between mean QRS vector and mean T 
vector. Although non-specific for ischemia, Strebel et al. have shown 
that a larger QRS-T angle has sensitivity/specificity for detecting NSTE- 
ACS of 0.78 / 0.91 [29]. Patients with STEMI and pacing were excluded 
from this analysis, but not those with LVH (i.e., <10% prevalent). 
Further indices previously described include the beat-to-beat lability in 
repolarization signal, defined as sum root mean square over the ST-T 
waveform of averaged consecutive beats (non-alternans component) 
or odd/even paired beats (alternans component) [30]. The incremental 
value of these novel features over standard ECG criteria has yet to be 
established in prospective clinical trials. 

BSPM-based approaches for ischemia detection 

Conceptually, acute cardiac ischemia can manifest on the surface 
ECG if—and only if—the positive pole of an ECG lead is facing that 
ischemic region. ECG changes are attenuated if the infarct is in a location 
only weakly sensed by the lead fields of the standard 12‑lead ECG. Thus, 
ECG methods with wider spatial coverage as derived from BSPM can 
improve the sensitivity of ischemia detection relative to only 12 leads. 
Numerous studies have nicely demonstrated this incremental gain in 
performance. In the OCCULT-MI trial, an 80‑lead BSPM provided an 
incremental 27.5% increase in STEMI detection versus the 12‑lead [31]. 

Such 80‑lead BSPM has been shown to yield sensitivity and specificity 
for occlusion myocardial infarction detection of 0.91 and 0.72, respec
tively [32]. The wider spatial coverage of BSPM has been shown to be 
specifically useful in increasing the diagnostic yield in patients with left 
circumflex occlusion in patients with nondiagnostic baseline 12‑lead 
ECG [33]. Although BSPM was shown many years ago to have higher 
sensitivity, it has not been employed clinically because it requires new 
equipment and much more laborious lead placement. 

One innovative approach to overcome this limitation, and perhaps 
one of the most potentially impactful techniques, is the derived vessel- 
specific ECG leads (VSEL) method [34,35]. The VSEL technique re
constructs, based on data from the 12‑lead ECG, three new ECG leads 
optimized for the detection of the occlusion of each of the three main 
coronary arteries (Fig. 3). The derivation is based on weighted co
efficients estimated from the unique BSPM distributions observed during 
balloon angioplasty experiments. These three easy-to-read leads not 
only can be reconstructed from the standard 12‑lead ECG without the 
need to apply additional electrodes, but also can provide superior spatial 
evaluation of the presence and anatomic location of acute cardiac 
ischemia. In a recent analysis, Ahmad et al. showed that the use of VSEL 
leads boosts the sensitivity and specificity of ECG interpreters for 
detecting ischemia from 0.68 and 0.62 to 0.91 and 0.73, respectively 
[36]. 

EP modeling & inverse ecg solution 

Electrocardiographic modeling refers to correlating extracellular 
potentials (electrograms) at the epicardium to observed ECG signals at 
the body surface. These models can simulate ECGs for various activation 
and excitation-propagation sequences. Alternatively, ECG Imaging re
fers to the mathematical reconstruction of the cardiac electrical activity, 
e.g., epicardial electrograms, using measurements obtained by surface 
ECG electrodes. These data ensemble techniques require mapping the 
ECG-derived time-voltage data to a 3-D model of the heart and the 
thorax [37]. By estimating the electrograms, various characteristics of 
the activation and repolarization phases can be used to detect and 
localize the extent and location of ischemic zones. Using 3-D geometric 
model of the human ventricles and torso, Lines et al. showed that ST 
elevation is a suboptimal metric for the identification of early ischemia 
of modest spatial extent as compared to several T-wave metrics [38]. T- 
wave peak and T-wave duration were more sensitive to regional 
ischemia of medium size, whereas T-wave area was more sensitive to 
even smaller ischemic regions. This is an unsurprising finding given that 
the hyperacute T-wave, which is basically the area under the T-wave, is 
a known markers of evolving ischemia and coronary occlusion [39]. 
Furthermore, using ECG Imaging, Marrus et al. showed that patients 
with ischemic myocardial injury have prolonged activation index and 
diminished recovery index as compared to their healthy counterparts 
[40]. In a different study model, Good et al. have shown that using 
Laplacian eigenmaps to compute an abstract space index from 600 
electrogram time signals is superior in detecting transient ischemia 
compared to other approaches [41]. 

One limitation of many ECG imaging techniques is lack of clinical 
utility in an emergency department setting. One promising technique to 
overcome this limitation is known as Cine-ECG [42]. Cine-ECG is a novel 
method to image the anatomical location of the average activation and 
recovery sequence in the heart from the time-voltage signals of the 
12‑lead ECG. To enable the rapid use of this approach, van Dam et al. 
computed the normal limits of the average activation sequence from 
~6500 normal ECGs [43], allowing quick and simple visualization of 
abnormal deviations in the electrical pathway in various 3D anatomical 
directions (Fig. 4). A recent report by Faramand et al. demonstrated that 
abnormal recovery pathway on Cine-ECG could detect acute coronary 
syndrome with sensitivity and negative predictive value of 0.83 and 
0.94, respectively [44]. An important finding, captured as an example in 
Fig. 4, is that there was diagnostic information not only during the ST 
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segment of the Cine-ECG, but throughout the whole STT segment. 

AI-based approaches for ischemia detection 

Acute myocardial ischemia affects the configuration of the QRS 
complex and ST-T waveform morphology disproportionately across the 
12 ECG leads. This means that different waveform measurements (e.g., 
duration, amplitude, and area of Q-wave, R, R`, QRS, ST, T-wave, Tpeak, 
Tpeak-end) need to be interpreted collectively while considering 
intra‑lead dynamics. These lead-specific measurements also need to be 
interpreted within the context of global inter‑lead ECG characteristics 
(e.g., axis, angles, loops, vectors), which also depend on body build, age, 
and may other factors. The morphology and configuration of these 
waveforms (e.g., upsloping, downsloping, concavity, symmetry, notch
ing, etc.) also contain important prognostic information that must be 
considered. Thus, the process of 12‑lead ECG interpretation involves 
many complex aspects and parameters, making it a highly multi- 
dimensional space problem. Humans are good in pattern recognition, 
which makes ECG interpretation an art. However, current diagnostic 
ECG criteria follow a rule-based logic (e.g., if “amplitude at J+80 > 0.1 
mV”: then “…”). These over-simplified decision rules are based on linear 
mathematical representations (e.g., logistic regression models) that are 
not adequately suitable for highly dimensional space. Accordingly, 
numerous AI techniques have been shown to provide powerful tools to 

solve such highly dimensional, non-linear mathematical 
representations. 

The simplest and most intuitive use of AI for ECG interpretation is 
through supervised machine learning using human-curated ECG fea
tures. In this approach, the raw ECG signal is preprocessed and known 
waveform features are extracted and then fed into a classifier (e.g., 
support vector machine, random forest, gradient boosting, neural 
network). The classifier is first trained on a subset of the sample to fine- 
tune hyperparameters of the classifier and then tested on the remaining 
subset of the sample to derive performance metrics [45]. Using this 
approach, Al-Zaiti et al. explored the utility of 554 hand-crafted ECG 
features for predicting NSTE-ACS in patients with chest pain [11,46,47]. 
Using a hybrid approach of data-driven algorithms combined with 
knowledge from experts, a reduced subset of features (k = 73) out
performed both expert clinicians and automated computer software 
with a gain of 37% and 52% in sensitivity, respectively, without any loss 
in negative predictive value (>94%). 

An alternative use of AI for ECG interpretation is through deep 
learning using raw ECG signal. In this approach, raw ECG signals from 
each of the 12 leads are fed in a multi-layered neural network with 
varying architectures (e.g., convolutional, recurrent, long/short-term 
memory). The neural network is either fed the actual waveform data 
(e.g., 1-D array of time-voltage data) or an ECG image (e.g., 2-D matrix 
of signals and time that has the format of image pixels). In either 

Fig. 3. Selected example of a 12‑lead ECG with VSEL display. 
This 12‑lead ECG was obtained on a 74-year-old male evaluated at the emergency department for chest pain of 2 h duration. There is subtle STE in lateral leads and 
reciprocal changes in inferior leads with borderline ST depression and T wave inversion in anterior leads, collectively indicating a pattern associated with severe 
infarct. However, the automated computer interpretation failed in capturing these patterns and indicated no ischemia or infarct. The derived VSEL shows clear STEMI 
of RCA with abnormal ischemic patterns in LAD and LCX. The patient experienced cardiac arrest at the emergency department, and after successful resuscitation he 
was referred for urgent angiography that revealed 90% RCA occlusion, 60% LCX occlusion, and 50% LAD occlusion. RCA: right coronary artery; LAD: left anterior 
descending; LCX: left circumflex. 
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approach, the multilayered neural network can extract features, and 
map them to a known outcome of interest (e.g., myocardial infarction). 
Despite the diminished explainability, these deep learning techniques 
are gaining growing popularity in the field of electrocardiology since 
there is no need for human oversight over feature engineering. A recent 
systematic review has identified six studies that used deep learning for 
acute myocardial infarction detection [48]. Five of these studies used a 
limited subset of the open source MIT-PTB dataset in which the positive 
class consisted of patients with classical ECG-confirmed STEMI, 
explaining the over-optimistic performance of sensitivity and specificity 
~0.98 in these studies. The remaining study in this meta-analysis [49], 
however, used real-world data from chest pain patients and demon
strated that deep learning on raw 12‑lead ECGs could identify patients 
with significant coronary occlusion with sensitivity and specificity of 
0.79 and 0.87, respectively. A more comprehensive analysis of 
>365,000 patients published after this meta-analysis showed that deep 
learning analysis of 12‑lead ECG data yields average sensitivity and 

specificity of 0.93 and 0.95 for the diagnosis of myocardial infarction 
[50]. However, the ascertainment of this outcome was based on ECG 
over-reading by a consensus committee (i.e., most likely using standard 
practice recommendations), which suggests that this study did not fully 
explore the role of deep learning in detecting acute myocardial ischemia 
in nondiagnostic 12‑lead ECGs where the real unmet clinical need is. 
Thus, it is imperative that clinicians critically examine which AI-based 
prediction models can add value to patient care from the AI models 
that do not [51]. 

Another related machine-learning approach is based on unsuper
vised learning and data reduction techniques. This approach includes 
the use of a training step and a non-linear transform to achieve a 
reduction in the dimension of the data space and thus identify predictive 
patterns. Good et al. applied the Laplacian Eigenmap transform to 
identify three dominant parameters from the resulting abstract space 
[41]. These three parameters created manifolds that varied in time but 
they captured enough information to predict the onset of acute 

Fig. 4. Selected example of cine-ECG display derived from a standard 12‑lead ECG. 
This Cine-ECG shows the anatomical location of the average activation sequence from the same 12‑lead ECG displayed in Fig. 3. The upper panel compares the 
average electrical pathway (green line) to normal limits in the general population (orange line). It indicates abnormal deviation toward left lateral and posterior 
myocardial walls. The middle and lower panels visualize this sequence to the anatomic location (red being outside the normal position boundaries in the middle 
panels. In the lower panels the colors indicate the time in ms (see bottom color bar). These findings are compatible with the angiographic findings of LCX coronary 
involvement affecting the posterolateral myocardial wall. 
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myocardial ischemia more rapidly and with improved sensitivity and 
specificity than conventional approaches [52]. 

Conclusions & future recommendations 

Patients with chest pain present with varying degrees of manifesta
tions and ECG findings across the continuum of coronary artery disease. 
Using ECG thresholds to diagnose ongoing ischemia due to acute oc
clusion of an epicardial coronary artery is a bit problematic. While a 
proportion of patients with ACS have ongoing ischemia and symptoms 
(e.g., patients with STEMI or OMI), a large proportion of ACS do not 
have active ischemia while first seen by the medical team. ECG mani
festations in ACS patients would then include a combination of features 
indicative of ongoing ischemia as well as features indicative of post- 
ischemic changes. In this commentary, we review numerous emerging 
ECG methods for optimizing the noninvasive detection of acute 
myocardial ischemia across the spectrum of ACS in clinical practice. 

First, numerous studies focus on describing unique visual waveform 
patterns (e.g., occlusion MI patterns) and/or computing quantitative 
ECG features (e.g., T wave complexity) as novel markers of myocardial 
ischemia. A strength of these studies is that the standard 12‑lead ECG is 
widely available and easy to use, and the sensitivity for OMI when using 
ECG features that do not rely on ST elevation is even far higher. How
ever, many of these patterns and features have been evaluated in offline 
retrospective analyses. Exploring the incremental gain of these patterns 
and features over the Fourth Universal definition of MI criteria in pro
spective clinical testing is warranted to drive the adoption of these ap
proaches in the clinical workflow. 

A second group of studies focused on the role of BSPM in boosting the 
12‑lead ECG sensitivity to myocardial ischemia. Despite significant 
gains in accuracy, these techniques remain impractical in emergency 
settings. The VSEL technique is a promising approach to bridge this gab 
by enhancing the spatial coverage of the 12‑lead ECG without the need 
to apply additional electrodes (Fig. 3). The clinical utility of these new 
ECG leads is yet to be determined in prospective clinical testing, 
including evaluating the impact on experts' accuracy and confidence in 
interpretation. 

A third group of studies focused on EP modeling and inverse ECG 
solution to model activation and recovery pathways as a mean to detect 
and localize ischemia. Similar to BSPM studies, many of these ap
proaches remain impractical in clinical practice, especially in an emer
gency department setting. A novel technique that can overcome these 
limitations and can be easily deployed in current practice is Cine-ECG 
(Fig. 4). Mapping the activation sequence over an anatomical model 
of the ventricles can be intuitive to clinicians and can help easy locali
zation of regional myocardial ischemia and might be potentially 
powerful in combination with AI algorithms. However, studies on the 
role of Cine-ECG in myocardial ischemia detection are in an initial 
research phase. 

Finally, a growing body of literature explores the role of AI in the 
ECG diagnosis of myocardial ischemia. Few studies used a traditional 
approach by implementing data-driven feature selection on hand- 
crafted ECG metrics followed by supervised machine learning with 
very promising results. Other studies directly applied deep learning to 
raw ECG signal without any domain-driven feature selection. The 
availability of real-world large clinical datasets and concerns about 
outcome ascertainment remain major obstacles in this growing are of 
science. Future AI research in this area should focus on hybrid neural 
networks that take as input both hand-crafted ECG features (including 
novel quantitative markers of repolarization dispersion) and raw ECG 
signal and that are trained against ECG-independent gold reference 
standards (i.e., biomarker and angiographic findings). 
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